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We found AI-written code produces 

~ 1.7x more issues



Intro. Everyone knew AI was producing more bugs. 
Now we know what kind.

Over the past year, as AI coding assistants 

became a standard part of the development 

workflow, developers have been raising alarms. 



Internal dashboards show more late-stage 

defects, SRE teams report more operational 

incidents tied to logic and configuration errors, 

and several high-profile postmortems in 2025 

have pointed to AI-authored or AI-assisted 

changes as contributing factors.

These aren’t isolated anecdotes. They reflect a 

growing pattern. A recent report found that 

while pull requests per author increased by 20% 

year-over-year in 2025, thanks to help from AI, 

incidents per pull request increased by 23.5%.



AI might be accelerating output, but it’s also 

amplifying certain types of mistakes.

A lack of data on what kinds of 
issues AI creates

Despite this, most organizations still lack hard 

data on what kinds of issues AI introduces most 

often or how those patterns differ from human-

authored code. That’s why we conducted this 

study: to finally get insight into what kinds of 

issues teams should be looking for in AI-

authored code. 



We uncovered the errors AI makes



We analyzed CodeRabbit’s reviews of 470 real 

GitHub open-source pull requests: 320 of 

which were labelled as AI co-authored and 150 

of which we determined were likely written by 

human developers (see info on the limitations 

of our study on the next page).  

CodeRabbit’s automated review taxonomy 

looked at logic, maintainability, security, and 

performance. Every finding was normalized to 

compare issue rates per 100 PRs.




The results confirm what many engineering 

teams have been sensing: AI-generated PRs 

don’t just contain more issues, they contain 

more of different kinds of issues than human 

authored PRs. 



And the increased issues skews toward 

categories that matter most: correctness, 

readability, error handling, and security.

Learn how AI code reviews can help.

~1.7x
more issues.

~1.3-1.7x
more critical & major findings.

75%
higher prevalence of logic & 
correctness issues.

https://www.swarmia.com/blog/dora-2025-report-ai-readiness/?utm_source=chatgpt.com
https://devops.com/survey-ai-tools-are-increasing-amount-of-bad-code-needing-to-be-fixed/?utm_source=chatgpt.com
https://devops.com/survey-ai-tools-are-increasing-amount-of-bad-code-needing-to-be-fixed/?utm_source=chatgpt.com
https://www.itpro.com/software/development/ai-generated-code-is-now-the-cause-of-one-in-five-breaches-but-developers-and-security-leaders-alike-are-convinced-the-technology-will-come-good-eventually?utm_source=chatgpt.com
https://www.itpro.com/software/development/ai-generated-code-is-now-the-cause-of-one-in-five-breaches-but-developers-and-security-leaders-alike-are-convinced-the-technology-will-come-good-eventually?utm_source=chatgpt.com
https://www.businessinsider.com/replit-ceo-apologizes-ai-coding-tool-delete-company-database-2025-7?utm_source=chatgpt.com
https://incidentdatabase.ai/blog/incident-report-2025-august-september-october/?utm_source=chatgpt.com
https://incidentdatabase.ai/blog/incident-report-2025-august-september-october/?utm_source=chatgpt.com
https://go.cortex.io/rs/563-WJM-722/images/2026-Benchmark-Report.pdf?version=0
https://www.coderabbit.ai


10 most notable findings.

01 AI co-authored PRs generate ~1.7× 
more issues overall.

The average AI PR produced 10.83 
findings vs. 6.45 for human PRs.

02 Severity escalates with AI: More 
critical & major issues.

AI PRs show ~1.4–1.7× more critical 
and major findings.

03 Logic & correctness problems lead 
the gap.

Logic/correctness issues were 75% 
more common in AI PRs.

04 Readability concerns spike more 
than 3× in AI PRs.

AI code “looks right” at a glance 
but often violates local idioms or 
structure.

05 Error handling & exception-path 
gaps are nearly 2× higher.

AI-generated code often created 
issues tightly tied to real-world 
outages.

06 Security issues are ~1.5x higher.

1.56× higher on security issues 
overall, ~2x with improper password 
handling.

07 Performance regressions are rare 
but disproportionately AI-driven.

Excessive I/O operations were ~8× 
more common in AI PRs.

08 Concurrency & dependency 
correctness saw ~2× increases.

Incorrect ordering, faulty 
dependency flow, or misuse of 
concurrency primitives appeared far 
more frequently in AI PRs.

09 Formatting problems were 2.66× 
more common in AI PRs.

Spacing, indentation, structural 
inconsistencies, and style drift 
were all more prevalent.

10 AI introduced nearly 2× more 
naming inconsistencies.

Unclear naming, mismatched 
terminology, and generic 
identifiers appeared frequently.

Limitations of our study

Getting data on issues that are more prevalent in AI-authored PRs is critical for engineering teams but the challenge was determining which PRs were AI-authored 
vs. human authored. Since it was impossible to directly confirm authorship of each PR of a large enough OSS dataset, we checked for mentions that a PR was co-
authored by AI and assumed that those that didn’t have them were human authored, for the purposes of the study. This resulted in statistically significant 
differences in issue patterns between the two datasets, so we are sharing that data in this report so teams can better know what to look for. However, we cannot 
guarantee all the PRs we labelled as human authored were only authored by humans. Our full methodology is shared at the end of the report.



AI co-authored PRs have more issues.

When we compared issue volume across the 470 pull 
requests, one pattern stood out clearly: AI co-
authored PRs contain far more findings than human-
only PRs.

On average, AI PRs have 10.83 issues per PR or about 
1.7× higher than the 6.45 issues in human 
submissions.

AI co-authored PRs also have higher 
spikes in issues.

But the more important story is the distribution. AI-
generated PRs have a much heavier tail, meaning 
they produce far more “busy” reviews.

At the 90th percentile, AI PRs hit 26 issues (vs. 12.3 for 
humans). At the 95th percentile, the gap widens 
further with 39.2 for AI vs. 22.65 for humans.
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AI produces more findings 
(average)

1.7x

10.83 (AI)

6.45 (Human)

AI produces more findings (90th 
percentile)

2.11x

26 (AI)

12.3 (Human)

Takeaway: AI PRs are harder to review in multiple ways.

AI doesn’t just generate more issues overall, it generates more PRs with a large number of issues, the 
kind that slow review pipelines and increase defect risk.

Teams adopting AI coding tools should expect higher variance and more frequent spikes in PR issues 
that demand deeper scrutiny.



AI PRs also have more severe 

& critical findings.
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AI co-authored PRs don’t just generate more findings, 
they generate more severe findings.

When normalized per 100 PRs, every severity band is 
elevated in AI submissions. 



Critical issues rise from 240 to 341 (1.4× higher). 

Major issues jump from 257 to 447 (1.7× higher).

Minor and trivial issues nearly double.

This pattern reinforces a core theme: AI-authored 
code increases both the volume and the impact of 
the issues reviewers must address.

AI produces more critical issues

1.4x

341 (AI)

240 (Human)

AI produces more major issues

1.7x

447 (AI)

257 (Human)

Takeaway: AI-generated PRs have more severe issues and, 
therefore, more risk.

AI-generated PRs produce more serious defects and pose more risk to production. The increase isn’t 
just noise; it’s a meaningful rise in substantive concerns that demand reviewer attention. And could 
lead to an incident if missed.



AI PR findings are highest around logic 

& correctness issues.
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Logic & correctness.

Business logic errors, 
misconfigurations, error and 
exception handling, null-pointer 
errors, and more.

AI produces more errors

1.75x

570 (AI)

326 (Human)

Code quality & 
maintainability.

Readability, formatting, and 
naming issues that slow reviews 
and contribute to long-term 
technical debt.

AI produces more errors

1.64x 

390 (AI)

238 (Human)

Security findings.

Issues that could lead to 
incidents like improper 
credential handling and 
insecure references.

AI produces more errors

1.57x 

94 (AI)

60 (Human)

Performance issues.

Performance issues also trend 
higher (though from a smaller 
sample size).

AI produces more errors

1.42x 

29.6 (AI)

20.9 (Human)

Within every major category including correctness, maintainability, security, and 
performance, AI co-authored PRs consistently generate more issues than human-only 
PRs. However, they generate more issues in certain areas. 

Takeaway: Teams should look for specific types of errors in AI PRs.
AI amplifies every major category of issues, not just overall volume. However, AI is much more likely to create logic and correctness 
issues than security findings. This information is helpful since teams can better know what to look for when reviewing AI PRs.



Where AI makes more mistakes...
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So, exactly what kinds of errors is AI making most 
often? We break them down even further so you know 
exactly what to look for.

Logic & correctness 
issues.
Logic and correctness categories show the largest 
spikes.

Algorithm and business-logic mistakes appear 194 
times per 100 AI PRs versus 86 for humans—over 
2.25× higher. 


Error and exception-handling gaps nearly double 
as well (70 vs. 36, or 1.97x more).


Misconfigurations, incorrect ordering of 
operations, and missing dependencies all show 
similar lifts (around 1.8–1.9× more).


Concurrency and safety issues stand out too. 
Incorrect concurrency control is 2.29× more 
common in AI PRs, and null-pointer/None 
dereference risks are over 2.2× higher.


Notably, conditional-logic errors are roughly equal 
across both groups, one of the only areas where 
humans and AI stumble at similar rates.

Takeaway: Reviewers should focus more on logic & correctness issues. 

AI error increase and frequency

Algorithm/business logic error 2.25x 194.28 errors

Conditional logic error 1.11x 110.10 errors

Misconfiguration 1.82x 81.14 errors

Error & exception handling issues  1.97x 70.37 errors

Incorrect sequence/dependency 1.81x 26.94 errors

Incorrect concurrency control 2.29x 15.49 errors

Null‑pointer/None dereference 2.27x 13.80 errors

While AI amplifies all kinds of errors, it particularly amplifies many of the most failure-
prone subcategories in modern codebases. That presents additional risk of down time 
and bugs in production. 

{   }



Where AI makes more mistakes...
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Code quality & 
maintainability 
challenges.
AI-generated code shows the biggest gaps, not in 
correctness or security, but in basic code quality, the 
things that make code readable, maintainable, and 
easy to review. These issues don’t break production, 
but they slow teams down and compound into long-
term technical debt.

The most striking gap is in readability: AI PRs 
surface 98 readability issues per 100 PRs, 
compared to just 31 in human submissions—a 
3.15× increase. Formatting problems follow closely, 
appearing 2.66× more often (59 vs. 22).


Naming consistency takes a hit as well: AI PRs 
show 61 unclear naming issues per 100 PRs, nearly 
double the human rate (humans create 32 or 1.87x 
less).


Patterns of unused or redundant code appear 
1.64× more frequently in AI-authored changes.

AI error increase and frequency

Code readability 3.15x 97.98 errors

Unclear naming 1.87x 60.61 errors

Code formatting errors  2.66x 59.26 errors

Unused/redundant code 1.64x 33.33 errors

Takeaway: Reviewers shouldn’t ignore style & quality issues if they want a 
maintainable codebase.

AI tends to generate code that looks correct at a glance but violates local conventions. 
This drives up review time, increases cognitive load for maintainers, and accelerates the 
accumulation of style-driven technical debt. Not tackling it during review just delays the 
problem. 

{   }



Where AI makes more mistakes... {   }
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Security vulnerabilities.
Security issues show a consistent (and meaningful) lift 
in AI co-authored PRs. While none of these 
vulnerabilities are unique to AI-generated code, they 
appear significantly more often, increasing the risk 
profile of AI-assisted development.

The most notable spike is in improper password 
handling, where AI PRs surface 66 issues per 100 
PRs versus 35 for humans, a 1.88× increase. These 
include hardcoded credentials, unsafe hashing, 
and ad-hoc authentication logic, all of which 
create direct exposure paths in production 
systems.


Insecure object references appear nearly 2× more 
often (7.74 vs. 4.05) and injection-style 
vulnerabilities like XSS show a roughly 2.7× lift. 


Even insecure deserialization, a classic but high-
impact flaw, appears ~1.8× more frequently in AI 
PRs.

AI error increase and frequency

Improper password handling 1.88x 65.99 errors

Insecure object reference 1.91x 7.74 errors

XSS 2.74x 3.70 errors

Insecure deserialization 1.82x 3.70 errors

Takeaway: AI makes dangerous security mistakes that teams need to get 
better at catching. 

AI amplifies the frequency of foundational security mistakes such as credential handling, 
unsafe references, injection risks, and more. Teams should consider pairing AI adoption 
with stronger SAST, linting, and security review practices to ensure their codebase is still 
protected.



Where AI makes more mistakes...
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Performance issues.
Performance-related issues are relatively rare overall, 
but when they do appear, AI-generated code shows 
a clear pattern: it’s less resource-efficient.

Excessive I/O operations, one of the clearest 
performance red flags, occur 5.39 times per 100 AI 
PRs compared to just 0.68 in human PRs. That’s a 
~7.9× increase. These issues typically manifest as 
unnecessary file reads, repeated network calls, or 
unbatched operations that can slow down 
systems under load.

AI error increase and frequency

Excessive I/O operations 7.9x 5.39 errors

Takeaway: AI-authored code can make your codebase less efficient.

AI is more likely to introduce inefficiency into code. That requires an extra lift from PR 
authors and reviewers to remediate the issues prior to merging it.

{   }



Where AI performs better than humans.
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Interestingly, a few subcategories lean in the other 
direction. In these areas, humans make more 
mistakes than AI.

Spelling errors are almost twice as common in 
human-authored PRs (18.92 vs. 10.77), perhaps 
reflecting the fact that humans write far more 
inline prose and comments. Or that devs are just 
bad at spelling? 

Testability issues also appear more often in 
human code (23.65 vs. 17.85).

Takeaway: Developers are only... human.

Developers aren’t all experts at spelling, which won’t surprise anyone who’s reviewed a PR in their 
lifetime. But humans also write more descriptive comments, documentation, and tests. That tends to 
lead to more spelling issues and slightly higher testability findings on human PRs.

Spelling errors

1.76x

10.77 (AI)

18.92 (Human)

Code testability issues

1.32x

17.85 (AI)

23.65 (Human)



Why these AI patterns emerge.
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01 Local business logic & domain context.
LLMs can generalize patterns from broad training data but often miss project-specific invariants, configuration 
rules, and edge-cases. This drives higher rates of algorithmic errors and misconfigurations in AI co-authored PRs.

02 Surface-level correctness without deep control-flow safety.
AI-generated code can look structurally correct while omitting essential safeguards such as null checks, short-
circuit conditions, and complete exception paths. This aligns with the elevated error-handling gaps and null-
pointer issues.

03 Inconsistent adherence to repository conventions.
Models revert to generic naming, formatting, and structural patterns rather than local style conventions. This 
shows up in the significant increase in readability, naming, and formatting findings.

04 Security best-practice drift.
Without explicit constraints, LLMs may reproduce outdated or unsafe patterns from older code, such as improper 
password handling or insecure references. This maps cleanly to the rise in security vulnerabilities across AI PRs.

05 Naïve resource usage.
Models default to clarity over efficiency unless prompted otherwise, leading to more excessive I/O, repeated 
operations, or suboptimal data structures.



Takeaways & mitigations.
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As AI-generated code becomes a standard part of 
the development workflow, teams need guardrails 
that counter the specific weaknesses surfaced in the 
data. 



Here we give you a roadmap to help you ensure that 
your AI’s speed doesn’t amplify defects downstream.

Provide up-front project context.

Give models access to project-
specific constraints (invariants, 
config patterns, architectural 
rules).


Use prompt snippets or repository 
“capsules” to ground the model in 
local domain logic.

Enforce style with policy-as-code.

Apply strict CI rules for 
formatting, naming, and structure 
(formatters, linters, style 
guides).


This directly reduces 
readability, formatting, and 
naming issues, some of the 
largest AI defect categories.

Add correctness safety rails.

Require pre-merge tests for any 
non-trivial control flow, 
including negative and edge 
cases.


Use nullability/type assertions 
at module boundaries.


Standardize error-handling 
patterns (don’t swallow 
exceptions; centralize handlers).

Codify security defaults.

Centralize credential/password 
handling and forbid ad-hoc 
approaches.


Use security linters and SAST 
checks for unsafe references, 
deserialization, and XSS.

Guide performance behavior.

E ncourage idiomatic data 
structures, batched I/O, and 
pagination.


Add smoke tests for I/O-heavy or 
resource-sensitive paths.

Adopt AI-aware PR checklists.

Include targeted questions such as:

“Are error paths tested?”


“Are concurrency primitives 
correct?”


“Are passwords handled via the 
approved helper?”

Get a third-party AI code review 
tool. 
AI code reviews can do a first-

pass to find most of the issues 
and do the heavy lifting of 
remediating AI-authored PRs.


Use a context-rich, third-party 
tool like CodeRabbit that maps 
your codebase and brings in 
dozens of points of context. 


Don’t trust the AI that created 
the error to find it. If it added 
the error into your code, it’s 
less likely to find it. 

https://www.coderabbit.ai


Methodology.

Data sources.

All findings are based on a scrape of open-
source GitHub pull requests (PRs) that used 
CodeRabbit for reviews.

PRs were classified as AI co-authored when 
tools such as Claude, Cursor, or Codex 
explicitly indicated authorship.

Sample size.
320 AI co-authored PRs and 150 human-only 
PRs were included in the analysis.

320 (AI)

150 (Human)

Filtering & preprocessing.

A small number of PRs incorrectly marked as 
AI co-authored 

were removed from the AI group.
(has_ai_coauthors = 

FALSE) 

Classification types were assigned by 
injecting CodeRabbit review comments 
tagged with the taxonomy categories.

Normalization.

Issues per 100 PRs
How we expressed all frequency metrics to 
enable apples-to-apples comparisons 
across cohorts.

Statistical approach.
D ifferences between groups were 
quantified using Poisson rate ratios with 
95% confidence intervals.


CIs were reported for all top-level 
categories and subcategories with ≥20 
total occurrences.

Limitations
Results re flect CodeRabbit’s taxonomy and coverage, which may emphasize certain issue types.


Some PRs that didn't explicitly indicate AI-assistance might have included AI in their creation.  For the purposes of this study, we assumed they did not and found 
statistically significant findings classifying them in this way.


Repository mix, code domains, and PR selection criteria may introduce bias into category frequencies.



About CodeRabbit.

CodeRabbit is the category-defining platform for AI code 

reviews, built for modern engineering teams navigating the 

rise of AI-generated development. 

By delivering context-aware reviews that pull in dozens of 

points of context, CodeRabbit provides the most 

comprehensive reviews coupled with customization features 

to tailor your review to your codebase and reduce the noise. 

Trusted by thousands of companies and open-source 

projects worldwide, CodeRabbit helps organizations catch 

bugs, strengthen security, and ship reliable code at speed.

Learn more at www.coderabbit.ai.

http://www.coderabbit.ai

