State of Al vs.
Human Code
Generation Report

We found Al-written code produces

S S A S i

Human

Q CodeRabbit



Intro.

Over the past year, as Al coding assistants
became a standard part of the development

workflow, developers have been raising alarms.

Internal dashboards show more_ late-stage
defects, SRE teams report more operational

incidents tied to logic and configuration errors,

and several high-profile postmortems in 2025

have pointed to Al-authored or Al-assisted

changes as contributing factors.

These aren’t isolated anecdotes. They reflect a
growing pattern. A recent report found that

while pull requests per author increased by 20%
year-over-yedr in 2025, thanks to help from Al,
incidents per pull request increased by 23.5%.

Al might be accelerating output, but it’s also
amplifying certain types of mistakes.

more issues.

Learn how Al code reviews can help.

A lack of data on what kinds of
issues Al creates

Despite this, most organizations still lack hard
data on what kinds of issues Al introduces most
often or how those patterns differ from human-
authored code. That's why we conducted this
study: to finally get insight into what kinds of
issues teams should be looking for in Al-
authored code.

We uncovered the errors Al makes

We analyzed CodeRabbit’s reviews of 470 real
CGitHub open-source pull recquests: 320 of
which were labelled as Al co-authored and 150
of which we determined were likely written by
human developers (see info on the limitations

of our study on the next page).

more critical & major findings.

CodeRabbit's automated review taxonomy
looked at logic, maintainability, security, and
performance. Every finding was normalized to

compare issue rates per 100 PRs.

The results confirm what many engineering
teams have been sensing: Al-generated PRs
don’t just contain more issues, they contain
more of different kinds of issues than human
authored PRs.

And the increased issues skews toward
categories that matter most: correctness,
readability, error handling, and security.

higher prevalence of logic &
correctness issues.

/


https://www.swarmia.com/blog/dora-2025-report-ai-readiness/?utm_source=chatgpt.com
https://devops.com/survey-ai-tools-are-increasing-amount-of-bad-code-needing-to-be-fixed/?utm_source=chatgpt.com
https://devops.com/survey-ai-tools-are-increasing-amount-of-bad-code-needing-to-be-fixed/?utm_source=chatgpt.com
https://www.itpro.com/software/development/ai-generated-code-is-now-the-cause-of-one-in-five-breaches-but-developers-and-security-leaders-alike-are-convinced-the-technology-will-come-good-eventually?utm_source=chatgpt.com
https://www.itpro.com/software/development/ai-generated-code-is-now-the-cause-of-one-in-five-breaches-but-developers-and-security-leaders-alike-are-convinced-the-technology-will-come-good-eventually?utm_source=chatgpt.com
https://www.businessinsider.com/replit-ceo-apologizes-ai-coding-tool-delete-company-database-2025-7?utm_source=chatgpt.com
https://incidentdatabase.ai/blog/incident-report-2025-august-september-october/?utm_source=chatgpt.com
https://incidentdatabase.ai/blog/incident-report-2025-august-september-october/?utm_source=chatgpt.com
https://go.cortex.io/rs/563-WJM-722/images/2026-Benchmark-Report.pdf?version=0
https://www.coderabbit.ai

Al co-authored PRs generate ~1.7%
more issues overall.

The average AI PR produced 10.83
findings vs. 6.45 for human PRs.

Severity escalates with Al: More
critical & major issues.

AI PRs show ~1.4-1.7x more critical
and major findings.

Logic & correctness problems lead
the gap.

Logic/correctness issues were 75%
more common in AI PRs.

Readability concerns spike more
than 3% in Al PRs.

AI code “looks right” at a glance
but often violates local idioms or
structure.

Limitations of our study

10 most notable findings.

Error handling & exception-path
gaps are nearly 2x higher.
AI-generated code often created

issues tightly tied to real-world
outages.

Security issues are ~1.5x higher.

1.56x higher on security issues
overall, ~2x with improper passwozrd
handling.

Performance regressions are rare
but disproportionately Al-driven.

Excessive I/0 operations were ~8x
more common in AI PRs.

Concurrency & dependency
correctness saw ~2x increases.
Incorrect ordering, faulty
dependency flow, or misuse of

concurrency primitives appeared far
more frequently in AI PRs.

Formatting problems were 2.66x%
more common in Al PRs.
Spacing, indentation, structural

inconsistencies, and style drift
were all more prevalent.

Al introduced nearly 2x more
naming inconsistencies.
Unclear naming, mismatched

terminology, and generic
identifiers appeared frequently.

Getting data on issues that are more prevalent in Al-authored PRs is critical for engineering teams but the challenge was determining which PRs were Al-authored

vs. human authored. Since it was impossible to directly confirm authorship of each PR of a large enough OSS dataset, we checked for mentions that a PR was co-

authored by Al and assumed that those that didn’t have them were human authored, for the purposes of the study. This resulted in statistically significant

differences in issue patterns between the two datasets, so we are sharing that data in this report so teams can better know what to look for. However, we cannot

guarantee all the PRs we labelled as human authored were only authored by humans. Our full methodology is shared at the end of the report.



Al co-authored PRs have more issues.

When we compared issue volume across the 470 pull

requests, one pattern stood out clearly: Al co- Al produces more findings Al produces more findings (90th
authored PRs contain far more findings than human- (overqge) percentile)
only PRs.

1.7x 2.11x

On average, Al PRs have 10.83 issues per PR or about
1.7x% higher than the 6.45 issues in human
submissions.

- 6.45 (Human) - 12.3 (Human)

But the more important story is the distribution. Al- / |
generated PRs have a much heavier tail, meaning

Al co-authored PRs also have higher
spikes in issues.

they produce far more “busy” reviews. ]

At the 90th percentile, Al PRs hit 26 issues (vs. 12.3 for
humans). At the 95th percentile, the gap widens
further with 39.2 for Al vs. 22.65 for humans.

Al doesn’t just generate more issues overall, it generates more PRs with a large number of issues, the
kind that slow review pipelines and increase defect risk.

Teams adopting Al coding tools should expect higher variance and more frequent spikes in PR issues
that demand deeper scrutiny.

@ CodeRabbit STATE OF AI VS. HUMAN CODE GENERATION REPORT 04



Al PRs also have more severe
& critical findings.

Al co-authored PRs don’t just generate more findings,
they generate more severe findings. Al produces more critical issues Al produces more major issues

When normalized per 100 PRs, every severity band is 1 o 4X :I_ o 7X
elevated in Al submissions.

 Critical issues rise from 240 to 341 (1.4% higher). - 341 (Al) _ 447 (AI)
« Major issues jump from 257 to 447 (1.7% higher).

AzEean

* Minor and trivial issues nearly double.

This pattern reinforces a core theme: Al-authored
code increases both the volume and the impact of
the issues reviewers must address.

Takeaway: Al-generated PRs have more severe issues and,
therefore, more risk.

Al-generated PRs produce more serious defects and pose more risk to production. The increase isn't
just noise; it's a meaningful rise in substantive concerns that demand reviewer attention. And could

lead to an incident if missed.

e CodeRabbit STATE OF AI VS. HUMAN CODE GENERATION REPORT 05



Al PR findings are highest around logic

& correctness issues.

Within every major category including correctness, maintainability, security, and
performance, Al co-authored PRs consistently generate more issues than human-only
PRs. However, they generate more issues in certain areas.

Logic & correctness.

Business logic errors,
misconfigurations, error and
exception handling, null-pointer
errors, and more.

Al produces more errors

1.75x

- 326 (Human)

Al amplifies every major category of issues, not just overall volume. However, Al is much more likely to create logic and correctness

Code quality &
maintainability.

Readability, formatting, and
naming issues that slow reviews
and contribute to long-term
technical debt.

Al produces more errors

1.64x

- 238 (Human)

Security findings.

Issues that could lead to
incidents like improper
credential handling and
insecure references.

Al produces more errors

1.57x

- 60 (Human)

Performance issues.

Performance issues also trend
higher (though from a smaller
sample size).

Al produces more errors

1.42x

- 20.9 (Human)

issues than security findings. This information is helpful since teams can better know what to look for when reviewing Al PRs.

@ CodeRabbit

STATE OF AI VS. HUMAN CODE GENERATION REPORT

0]¢



Where Al makes more mistakes...

So, exactly what kinds of errors is Al making most

often? We break them down even further so you know Al error increase and frequency
exactly what to look for.
Algorithm/business logic error 2.25x
Logic & correctness
o Conditional logic error 1.11x
ISSUesS.
Logic and correctness categories show the largest Mlsconflgurqtlon 1.82x
spikes.
Error & exception handling issues 1.97x
« Algorithm and business-logic mistakes appear 194
times per 100 Al PRs versus 86 for humans—over
2.25% higher. Incorrect sequence/dependency 1.81x
« Error and exception-handling gaps nearly double
as well (70 vs. 36, or 1.97x more). Incorrect concurrency control 2.29x
« Misconfigurations, incorrect ordering of .
Null-pointer/None dereference
operations, and missing dependencies all show P / 2.27x
similar lifts (around 1.8-1.9x more).
« Concurrency and safety issues stand out too.
Incorrect concurrency control is 2.29x more
common in Al PRs, and null-pointer/None
dereference risks are over 2.2x higher. While Al amplifies all kinds of errors, it particularly amplifies many of the most failure-
- Notably, conditional-logic errors are roughly equal prone subcategories in modern codebases. That presents additional risk of down time
across both groups, one of the only areas where and bugs in production.

humans and Al stumble at similar rates.

@ CodeRabbit STATE OF AI VS. HUMAN CODE GENERATION REPORT 07



Where Al makes more mistakes...

Code quality &

Al error increase and frequency

maintainability

Cod dabilit
challenges. ode readability 3.15x
Al-generated code shows the biggest gaps, not in Unclear naming 1.87x

correctness or security, but in basic code quality, the
things that make code readable, maintainable, and Code formatting errors 2.66X
easy to review. These issues don’t break production,
but they slow teams down and compound into long-

Unused/redundant code 1.64x

term technical debt.

« The most striking gap is in readability: Al PRs
surface 98 readability issues per 100 PRs,
compared to just 31in human submissions—a
3.15% increase. Formatting problems follow closely,

appearing 2.66x more often (59 vs. 22). . .
Al tends to generate code that looks correct at a glance but violates local conventions.

This drives up review time, increases cognitive load for maintainers, and accelerates the
dotblethe-htpbmrrirte- e e g - 32-br -7 accumulation of style-driven technical debt. Not tackling it during review just delays the
EER)D problem.

« Naming consistency takes a hit as well: Al PRs
show 61 unclear naming issues per 100 PRs, nearly

« Patterns of unused or redundant code appear
1.64x more frequently in Al-authored changes.

@ CodeRabbit STATE OF AI VS. HUMAN CODE GENERATION REPORT 08



Where Al makes more mistakes...

Security vulnerabilities.

Security issues show a consistent (and meaningful) lift
in Al co-authored PRs. While none of these
vulnerabilities are unique to Al-generated code, they
appear significantly more often, increasing the risk
profile of Al-assisted development.

« The most notable spike is in improper password
handling, where Al PRs surface 66 issues per 100
PRs versus 35 for humans, a 1.88% increase. These
include hardcoded credentials, unsafe hashing,
and ad-hoc authentication logic, all of which
create direct exposure paths in production
systems.

 Insecure object references appear nearly 2x more
often (7.74 vs. 4.05) and injection-style
vulnerabilities like XSS show a roughly 2.7 lift.

« Even insecure deserialization, a classic but high-
impact flaw, appears ~1.8x more frequently in Al
PRs.

Q CodeRabbit

Al error increase and frequency

Improper password handling
Insecure object reference

XSS

Insecure deserialization

1.88x

1.91x

2.74x

1.82x

Al amplifies the frequency of foundational security mistakes such as credential handling,
unsafe references, injection risks, and more. Teams should consider pairing Al adoption
with stronger SAST, linting, and security review practices to ensure their codebase is still

protected.

STATE OF AI VS. HUMAN CODE GENERATION REPORT

09



Where Al makes more mistakes...

Performance issues.

Performance-related issues are relatively rare overall,
but when they do appear, Al-generated code shows
a clear pattern: it's less resource-efficient.

« Excessive |/O operations, one of the clearest
performance red flags, occur 5.39 times per 100 Al
PRs compared to just 0.68 in human PRs. That's a
~79% increase. These issues typically manifest as
unnecessary file reads, repeated network calls, or
unbatched operations that can slow down
systems under load.

@ CodeRabbit

Al error increase and frequency

Excessive /O operations 7 .9X

Al is more likely to introduce inefficiency into code. That requires an extra lift from PR
authors and reviewers to remediate the issues prior to merging it.

STATE OF AI VS. HUMAN CODE GENERATION REPORT

10



Where Al performs better than humans.

Interestingly, a few subcategories lean in the other
direction. In these areas, humans make more Spelling errors Code testability issues

mistakes than Al. 1 ] 76X :I_ . 32X

e Spelling errors are almost twice as common in
human-authored PRs (18.92 vs. 10.77), perhaps
reflecting the fact that humans write far more
inline prose and comments. Or that devs are just
bad at spelling? &

- 18.92 (Human)

- 23.65 (Human)

» Testability issues also appear more often in
human code (23.65 vs. 17.85).

s

Developers aren’t all experts at spelling, which won't surprise anyone who's reviewed a PR in their
lifetime. But humans also write more descriptive comments, documentation, and tests. That tends to
lead to more spelling issues and slightly higher testability findings on human PRs.

@ CodeRabbit STATE OF AI VS. HUMAN CODE GENERATION REPORT 11



Why these Al patterns emerge.

01

02

03

04

05

Local business logic & domain context.

LLMs can generalize patterns from broad training data but often miss project-specific invariants, configuration

rules, and edge-cases. This drives higher rates of algorithmic errors and misconfigurations in AI co-authored PRs.

Surface-level correctness without deep control-flow safety.

AI-generated code can look structurally correct while omitting essential safeguards such as null checks, short-
circuit conditions, and complete exception paths. This aligns with the elevated error-handling gaps and null-
polinter issues.

Inconsistent adherence to repository conventions.

Models revert to generic naming, formatting, and structural patterns rather than local style conventions. This
shows up in the significant increase in readability, naming, and formatting findings.

Security best-practice drift.

Without explicit constraints, LLMs may reproduce outdated or unsafe patterns from older code, such as improper

password handling or insecure references. This maps cleanly to the rise in security vulnerabilities across AI PRs.

Naive resource usage.

Models default to clarity over efficiency unless prompted otherwise, leading to more excessive I/0, repeated
operations, or suboptimal data structures.

@ CodeRabbit STATE OF AI VS. HUMAN CODE GENERATION REPORT

12



Takeaways & mitigations.

As Al-generated code becomes a standard part of

the development workflow, teams need guardrails

that counter the specific weaknesses surfaced in the

data.

Here we give you a roadmap to help you ensure that
your Al's speed doesn’t amplify defects downstream.

-Q

{ > Enforce style with policy-as-code.

Provide up-front project context.

e« Give models access to project-

specific constraints (invariants,
config patterns, architectural
rules).

-« Use prompt snippets or repository

“capsules” to ground the model in
local domain logic.

« Apply strict CI rules for

formatting, naming, and structure
(formatters, linters, style
guides).

« This directly reduces

readability, formatting, and
naming issues, some of the
largest AI defect categories.

Q CodeRabbit

9

&

Add correctness safety rails.

« Require pre-merge tests for any
non-trivial control flow,
including negative and edge
cases.

-« Use nullability/type assertions
at module boundaries.

« Standardize error-handling
patterns (don’'t swallow

exceptions; centralize handlers).

Codify security defaults.

« Centralize credential/password
handling and forbid ad-hoc
approaches.

« Use security linters and SAST
checks for unsafe references,
deserialization, and XSS.

Guide performance behavior.

« Encourage idiomatic data
structures, batched I/0, and
pagination.

« Add smoke tests for I/0-heavy or
resource-sensitive paths.

Adopt Al-aware PR checklists.

Include targeted questions such as:

« “Are error paths tested?”

« “Are concurrency primitives
correct?”

« “Are passwords handled via the
approved helper?”

Get a third-party Al code review
tool.

« AT code reviews can do a first-
pass to find most of the issues
and do the heavy lifting of
remediating AI-authored PRs.

« Use a context-rich, third-party
tool like CodeRabbit that maps
your codebase and brings in
dozens of points of context.

e Don't trust the AI that created

the error to find it. If it added

the error into your code, it's
less likely to find it.

STATE OF AI VS. HUMAN CODE GENERATION REPORT

13


https://www.coderabbit.ai

Methodology.

Data sources. Filtering & preprocessing.

All findings are based on a scrape of open- A small number of PRs incorrectly marked as

source GitHub pull requests (PRs) that used Al co-authored (has_ai_coauthors =

CodeRabbit for reviews. FALSE) were removed from the Al group. | I

0 __.-" .I-.__

Classification types were assigned by

injecting CodeRabbit review comments

PRs were classified as Al co-authored when tagged with the taxonomy categories. Statistical approach.

tools such as Claude, Cursor, or Codex

explicitly indicated authorship. > Diiiterenees [DEiieen groups wiere

quantified using Poisson rate ratios with

t * @ . g 95% confidence intervals.
Normalization.
« Cls were reported for all top-level
Issues pexr 100 PRs categories and subcategories with 220

Sample size How we expressed all frequency metrics to total occurrences.

enable apples-to-apples comparisons
320 Al co-authored PRs and 150 human-only

PRs were included in the analysis.

across cohorts.

=) 320 (Al)

g 150 (Human)

() Limitations
« Results reflect CodeRabbit’s taxonomy and coverage, which may emphasize certain issue types.

« Some PRs that didn't explicitly indicate Al-assistance might have included Al in their creation. For the purposes of this study, we assumed they did not and found
statistically significant findings classifying them in this way.

« Repository mix, code domains, and PR selection criteria may introduce bias into category frequencies.



About CodeRabbit.

CodeRabbit is the category-defining platform for Al code
reviews, built for modern engineering teams navigating the

rise of Al-generated development.

By delivering context-aware reviews that pull in dozens of
points of context, CodeRabbit provides the most
comprehensive reviews coupled with customization features
to tailor your review to your codebase and reduce the noise.

Trusted by thousands of companies and open-source
projects worldwide, CodeRabbit helps organizations catch
bugs, strengthen security, and ship reliable code at speed.

@ CodeRabbit


http://www.coderabbit.ai

